The non-linear evolution of magnetic flux ropes: 3. effects of dissipation
نویسندگان
چکیده
We study the evolution (expansion or oscillation) of cylindrically symmetric magnetic flux ropes when the energy dissipation is due to a drag force proportional to the product of the plasma density and the radial speed of expansion. The problem is reduced to a single, second-order, ordinary differential equation for a damped, non-linear oscillator. Motivated by recent work on the interplanetary medium and the solar corona, we consider polytropes whose index, c, may be less than unity. Numerical analysis shows that, in contrast to the small-amplitude case, large-amplitude oscillations are quasi-periodic with frequencies substantially higher than those of undamped oscillators. The asymptotic behaviour described by the momentum equation is determined by a balance between the drag force and the gradient of the gas pressure, leading to a velocity of expansion of the flux rope which may be expressed as 1=2cr=t, where r is the radial coordinate and t is the time. In the absence of a drag force, we found in earlier work that the evolution depends both on the polytropic index and on a dimensionless parameter, j. Parameter j was found to have a critical value above which oscillations are impossible, and below which they can exist only for energies less than a certain energy threshold. In the presence of a drag force, the concept of a critical j remains valid, and when j is above critical, the oscillatory mode disappears altogether. Furthermore, critical j remains dependent only on c and is, in particular, independent of the normalized drag coefficient, m . Below critical j, however, the energy required for the flux rope to escape to infinity depends not only on j (as in the conservative force case) but also on m . This work indicates how under certain conditions a small change in the viscous drag coefficient or the initial energy may alter the evolution drastically. It is thus important to determine m and j from observations.
منابع مشابه
Initiation of Coronal Mass Ejections in a Global Evolution Model
Loss of equilibrium of magnetic flux ropes is a leading candidate for the origin of solar coronal mass ejections (CMEs). The aim of this paper is to explore to what extent this mechanism can account for the initiation of CMEs in the global context. A simplified MHD model for the global coronal magnetic field evolution in response to flux emergence and shearing by large-scale surface motions is ...
متن کاملReconnecting flux-rope dynamo.
We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small ...
متن کاملChemical reaction and radiation effects on MHD free convection flow through a porous medium bounded by a vertical surface with constant heat and mass flux
In the present paper, an analysis was carried out to investigate effects of radiation on a free convection flow bounded by a vertical surface embedded in a porous medium with constant suction velocity. It was under the influence of uniform magnetic field in the presence of a homogenous chemical reaction and viscous dissipation with constant heat and mass flux. The non-dimensional governing equa...
متن کاملHeliospheric evolution of solar wind small‐scale magnetic flux ropes
[1] We present results from the first comprehensive small‐scale flux rope survey between 0.3 and 5.5 AU using the Helios 1, Helios 2, IMP 8, Wind, ACE, and Ulysses spacecrafts to examine their occurrence rate, properties, and evolution. Small‐scale flux ropes are similar to magnetic clouds and can be modeled as a constant‐alpha, force‐free, cylindrically symmetric flux rope. They differ from ma...
متن کاملMicropolar Fluid Flow Induced due to a Stretching Sheet with Heat Source/Sink and Surface Heat Flux Boundary Condition Effects
Computational and mathematical models provide an important compliment to experimental studies in the development of solar energy engineering in case of electro-conductive magnetic micropolar polymers. Inspired by further understanding the complex fluid dynamics of these processes, we examine herein the non-linear steady, hydromagnetic micropolar flow with radiation and heat source/sink effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997